讲座题目: Kato's condition for vanishing viscosity near Onsager's critical regularity
讲座摘要: In 1984 T. Kato showed that for sufficiently regular solutions, the vanishing viscosity limit is equivalent to having vanishing viscous dissipation in a boundary layer of width proportional to the viscosity. We prove that Kato's criterion holds for Holder continuous weak solutions with the regularity index arbitrarily close to the Onsager's critical exponent through a new boundary layer foliation and a global mollification technique. This is a joint work with Zhilei Liang and Dehua Wang.
讲座时间:2022年11月03日(周四)上午9:00
讲座方式:线上开展(腾讯会议,会议号:413619168)
嘉宾简介:陈明,任职于美国匹兹堡大学数学系。博士毕业于美国布朗大学数学系,师从国际著名数学家Walter Strauss教授。主要从事非线性偏微分方程的稳定性理论及行波解等问题的研究,已取得一系列国际领先的重要成果,发表在“Math Ann.”、 “Arch. Ration. Mech. Anal. ”、 “Adv. Math.”、 “Comm. Math. Phys.”、 “Commun. Pure Appl. Anal.”、“SIAM J. Math. Anal.”、 “J. Funct. Anal.”、“Proc. R. Soc. Lond. Ser. A”、“Trans. Amer. Math. Soc.”、“Comm. Partial Differential Equations”、“Indiana U. J. Math”、“J. Nonlinear Sci.”等国际著名学术期刊上